↳ Prolog
↳ PrologToPiTRSProof
f_in(.(A, As), .(B, Bs), RES) → U2(A, As, B, Bs, RES, f_in(.(B, .(A, As)), Bs, RES))
f_in(A, [], RES) → U1(A, RES, g_in(A, [], RES))
g_in(.(C, Cs), D, RES) → U3(C, Cs, D, RES, g_in(Cs, .(C, D), RES))
g_in([], RES, RES) → g_out([], RES, RES)
U3(C, Cs, D, RES, g_out(Cs, .(C, D), RES)) → g_out(.(C, Cs), D, RES)
U1(A, RES, g_out(A, [], RES)) → f_out(A, [], RES)
U2(A, As, B, Bs, RES, f_out(.(B, .(A, As)), Bs, RES)) → f_out(.(A, As), .(B, Bs), RES)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
f_in(.(A, As), .(B, Bs), RES) → U2(A, As, B, Bs, RES, f_in(.(B, .(A, As)), Bs, RES))
f_in(A, [], RES) → U1(A, RES, g_in(A, [], RES))
g_in(.(C, Cs), D, RES) → U3(C, Cs, D, RES, g_in(Cs, .(C, D), RES))
g_in([], RES, RES) → g_out([], RES, RES)
U3(C, Cs, D, RES, g_out(Cs, .(C, D), RES)) → g_out(.(C, Cs), D, RES)
U1(A, RES, g_out(A, [], RES)) → f_out(A, [], RES)
U2(A, As, B, Bs, RES, f_out(.(B, .(A, As)), Bs, RES)) → f_out(.(A, As), .(B, Bs), RES)
F_IN(.(A, As), .(B, Bs), RES) → U21(A, As, B, Bs, RES, f_in(.(B, .(A, As)), Bs, RES))
F_IN(.(A, As), .(B, Bs), RES) → F_IN(.(B, .(A, As)), Bs, RES)
F_IN(A, [], RES) → U11(A, RES, g_in(A, [], RES))
F_IN(A, [], RES) → G_IN(A, [], RES)
G_IN(.(C, Cs), D, RES) → U31(C, Cs, D, RES, g_in(Cs, .(C, D), RES))
G_IN(.(C, Cs), D, RES) → G_IN(Cs, .(C, D), RES)
f_in(.(A, As), .(B, Bs), RES) → U2(A, As, B, Bs, RES, f_in(.(B, .(A, As)), Bs, RES))
f_in(A, [], RES) → U1(A, RES, g_in(A, [], RES))
g_in(.(C, Cs), D, RES) → U3(C, Cs, D, RES, g_in(Cs, .(C, D), RES))
g_in([], RES, RES) → g_out([], RES, RES)
U3(C, Cs, D, RES, g_out(Cs, .(C, D), RES)) → g_out(.(C, Cs), D, RES)
U1(A, RES, g_out(A, [], RES)) → f_out(A, [], RES)
U2(A, As, B, Bs, RES, f_out(.(B, .(A, As)), Bs, RES)) → f_out(.(A, As), .(B, Bs), RES)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
F_IN(.(A, As), .(B, Bs), RES) → U21(A, As, B, Bs, RES, f_in(.(B, .(A, As)), Bs, RES))
F_IN(.(A, As), .(B, Bs), RES) → F_IN(.(B, .(A, As)), Bs, RES)
F_IN(A, [], RES) → U11(A, RES, g_in(A, [], RES))
F_IN(A, [], RES) → G_IN(A, [], RES)
G_IN(.(C, Cs), D, RES) → U31(C, Cs, D, RES, g_in(Cs, .(C, D), RES))
G_IN(.(C, Cs), D, RES) → G_IN(Cs, .(C, D), RES)
f_in(.(A, As), .(B, Bs), RES) → U2(A, As, B, Bs, RES, f_in(.(B, .(A, As)), Bs, RES))
f_in(A, [], RES) → U1(A, RES, g_in(A, [], RES))
g_in(.(C, Cs), D, RES) → U3(C, Cs, D, RES, g_in(Cs, .(C, D), RES))
g_in([], RES, RES) → g_out([], RES, RES)
U3(C, Cs, D, RES, g_out(Cs, .(C, D), RES)) → g_out(.(C, Cs), D, RES)
U1(A, RES, g_out(A, [], RES)) → f_out(A, [], RES)
U2(A, As, B, Bs, RES, f_out(.(B, .(A, As)), Bs, RES)) → f_out(.(A, As), .(B, Bs), RES)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
G_IN(.(C, Cs), D, RES) → G_IN(Cs, .(C, D), RES)
f_in(.(A, As), .(B, Bs), RES) → U2(A, As, B, Bs, RES, f_in(.(B, .(A, As)), Bs, RES))
f_in(A, [], RES) → U1(A, RES, g_in(A, [], RES))
g_in(.(C, Cs), D, RES) → U3(C, Cs, D, RES, g_in(Cs, .(C, D), RES))
g_in([], RES, RES) → g_out([], RES, RES)
U3(C, Cs, D, RES, g_out(Cs, .(C, D), RES)) → g_out(.(C, Cs), D, RES)
U1(A, RES, g_out(A, [], RES)) → f_out(A, [], RES)
U2(A, As, B, Bs, RES, f_out(.(B, .(A, As)), Bs, RES)) → f_out(.(A, As), .(B, Bs), RES)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
G_IN(.(C, Cs), D, RES) → G_IN(Cs, .(C, D), RES)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
G_IN(.(C, Cs), D) → G_IN(Cs, .(C, D))
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
F_IN(.(A, As), .(B, Bs), RES) → F_IN(.(B, .(A, As)), Bs, RES)
f_in(.(A, As), .(B, Bs), RES) → U2(A, As, B, Bs, RES, f_in(.(B, .(A, As)), Bs, RES))
f_in(A, [], RES) → U1(A, RES, g_in(A, [], RES))
g_in(.(C, Cs), D, RES) → U3(C, Cs, D, RES, g_in(Cs, .(C, D), RES))
g_in([], RES, RES) → g_out([], RES, RES)
U3(C, Cs, D, RES, g_out(Cs, .(C, D), RES)) → g_out(.(C, Cs), D, RES)
U1(A, RES, g_out(A, [], RES)) → f_out(A, [], RES)
U2(A, As, B, Bs, RES, f_out(.(B, .(A, As)), Bs, RES)) → f_out(.(A, As), .(B, Bs), RES)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
F_IN(.(A, As), .(B, Bs), RES) → F_IN(.(B, .(A, As)), Bs, RES)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
F_IN(.(A, As), .(B, Bs)) → F_IN(.(B, .(A, As)), Bs)
From the DPs we obtained the following set of size-change graphs: